Multilocus Phylogeography and Population Genetic Analyses of Opsariichthys hainanensis Reveal Pleistocene Isolation Followed by High Gene Flow around the Gulf of Tonkin

Author:

Wang Junjie,Zhang Wenjun,Wu Jinxian,Li Chao,Ju Yu-Min,Lin Hung-DuORCID,Zhao Jun

Abstract

The ichthyofauna of continental islands is characterized by immigration through a land bridge due to fluctuating sea levels. Hainan Island is adjacent to the southern margin of mainland China and provides opportunities for understanding the origin and diversification of freshwater fishes. The aim of our study was to evaluate the level of genetic variation and phylogeographic structure of Opsariichthys hainanensis on Hainan Island and mainland China, using mtDNA cyt b gene (1140 bp) and D-loop (926 bp), nuclear RAG1 gene (1506 bp), and 12 microsatellite loci. Mitochondrial phylogenetic analysis identified five major lineages according to the geographical distribution from different populations. We suggested that two dispersal events occurred: the population in the Changhua River migrated to the Red River (Lineage B), and the populations in the South Hainan region moved northwards to the North Hainan region. However, populations in Northwest Hainan Island dispersed to the populations around the Gulf of Tonkin (Lineage A1) and populations in Northeast Hainan Island dispersed to the populations in mainland China (Lineage A2). Our results indicated that the populations of O. hainanensis suffered a bottleneck event followed by a recent population expansion supported by the ABC analysis. We suggest that O. hainanensis populations were found mostly in the lowlands and a lack of suitable freshwater habitat in southern mainland China and Hainan during the Last Interglacial period, and then expansion occurred during the Last Glacial Maximum.

Funder

National Natural Science Foundation of China

the China-ASEAN Maritime Cooperation Fund

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3