Affiliation:
1. Faculty of Biomedical Engineering, Department of Medical Informatics and Artificial Intelligence, Silesian University of Technology, Roosevelt 40, 41-800 Zabrze, Poland
Abstract
The global burden of atrial fibrillation (AFIB) is constantly increasing, and its early detection is still a challenge for public health and motivates researchers to improve methods for automatic AFIB prediction and management. This work proposes higher-order spectra analysis, especially the bispectrum of electrocardiogram (ECG) signals combined with the convolution neural network (CNN) for AFIB detection. Like other biomedical signals, ECG is non-stationary, non-linear, and non-Gaussian in nature, so the spectra of higher-order cumulants, in this case, bispectra, preserve valuable features. The two-dimensional (2D) bispectrum images were applied as input for the two CNN architectures with the output AFIB vs. no-AFIB: the pre-trained modified GoogLeNet and the proposed CNN called AFIB-NET. The MIT-BIH Atrial Fibrillation Database (AFDB) was used to evaluate the performance of the proposed methodology. AFIB-NET detected atrial fibrillation with a sensitivity of 95.3%, a specificity of 93.7%, and an area under the receiver operating characteristic (ROC) of 98.3%, while for GoogLeNet results for sensitivity and specificity were equal to 96.7%, 82%, respectively, and the area under ROC was equal to 96.7%. According to preliminary studies, bispectrum images as input to 2D CNN can be successfully used for AFIB rhythm detection.
Funder
Silesian University of Technology statutory