Investigation of Proton Exchange Membrane Fuel Cell Performance by Exploring the Synergistic Effects of Reaction Parameters via Power Curve and Impedance Spectroscopy Analysis

Author:

Ustuner Gozde123ORCID,Hung Yue3,Mahajan Devinder12ORCID

Affiliation:

1. Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA

2. Institute of Gas Innovation and Technology, Advanced Energy Research and Technology, Stony Brook, NY 11794, USA

3. Mechanical Engineering Technology Department, Farmingdale State College, Farmingdale, NY 11735, USA

Abstract

In this paper, a comprehensive analysis of the parameters that affect polymer electrolyte membrane fuel-cell performance is presented. Experiments were conducted on a single fuel cell membrane with an active area of 5 cm2. To study the fuel cell operation, parametric studies of temperature, pressure and relative humidity values were conducted under cyclic voltammetry for impedance analysis. The impact of the behavior of all three parameters on the fuel-cell performance were recorded and analyzed. As the temperature increased from 50 °C to 74 °C, the Pt catalyst surface areas demonstrated lower activation losses as the membrane conductivity increased. It is confirmed that an increase in temperature accompanied higher humidity levels to provide sufficient cell hydration that resulted in a higher performance output. The impedance measurements indicate that low humidity levels resulted in higher cell resistance and mass transport losses. As the back pressure increased, the membrane resistance decreased, which also reduced mass transport losses. The results indicate that the important factors affecting the fuel cell performance are mass transport limitation and membrane resistance. Based on the results of this study, the optimum performance can be achieved by operating at higher pressures and temperatures with humidified reactant gases.

Funder

Institute of Gas Innovation and Technology (I-GIT) at Stony Brook University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3