Runge–Kutta–Nyström Pairs of Orders 8(6) for Use in Quadruple Precision Computations

Author:

Kovalnogov Vladislav N.1,Matveev Alexander F.1,Generalov Dmitry A.1,Karpukhina Tamara V.1,Simos Theodore E.12345ORCID,Tsitouras Charalampos6ORCID

Affiliation:

1. Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan

3. Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China

4. Department of Mathematics, University of Western Macedonia, 52100 Kastoria, Greece

5. Department of Civil Engineering, Democritus University of Thrace, Section of Mathematics, 67100 Xanthi, Greece

6. General Department, National & Kapodistrian University of Athens, Euripus Campus, 34400 Psachna, Greece

Abstract

The second-order system of non-stiff Initial Value Problems (IVP) is considered and, in particular, the case where the first derivatives are absent. This kind of problem is interesting since since it arises in many significant problems, e.g., in Celestial mechanics. Runge–Kutta–Nyström (RKN) pairs are perhaps the most successful approaches for solving such type of IVPs. To achieve a pair attaining orders eight and six, we have to solve a well-defined set of equations with respect to the coefficients. Here, we provide a simplified form of these equations in a robust algorithm. When creating such pairings for use in double precision arithmetic, numerous conditions are often satisfied. First and foremost, we strive to keep the coefficients’ magnitudes small to prevent accuracy loss. We may, however, allow greater coefficients when working with quadruple precision. Then, we may build pairs of orders eight and six with significantly smaller truncation errors. In this paper, a novel pair is generated that, as predicted, outperforms state-of-the-art pairs of the same orders in a collection of important problems.

Funder

Government of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference22 articles.

1. Méthodes de Nyström pour l’équation différentielle y″ = f(x,y);Hairer;Numer. Math.,1976

2. Hairer, E., Nørsett, S.P., and Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems, Springer.

3. Eine Runge-Kutta-Nyström-Formel g-ter Ordnung rnit Schrittweitenkontrolle fur Differentialgleichungen x..=f(t,x);Fehlberg;ZAMM,1981

4. Families of Runge-Kutta-Nyström formulae;Dormand;IMA J. Numer. Anal.,1987

5. High-Order Runge-Kutta-Nyström formulae;Dormand;IMA J. Numer. Anal.,1987

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3