Spatial Patterns and Determinants of PM2.5 Concentrations: A Land Use Regression Analysis in Shenyang Metropolitan Area, China

Author:

Shi Tuo1,Zhang Yang1,Yuan Xuemei1,Li Fangyuan1,Yan Shaofang1

Affiliation:

1. College of Life Science, Shenyang Normal University, Shenyang 110034, China

Abstract

Identifying impact factors and spatial variability of pollutants is essential for understanding environmental exposure and devising solutions. This research focused on PM2.5 as the target pollutant and developed land use regression models specific to the Shenyang metropolitan area in 2020. Utilizing the Least Absolute Shrinkage and Selection Operator approach, models were developed for all seasons and for the annual average, explaining 62–70% of the variability in PM2.5 concentrations. Among the predictors, surface pressure exhibited a positive correlation with PM2.5 concentrations throughout most of the year. Conversely, both elevation and tree cover had negative effects on PM2.5 levels. At a 2000 m scale, landscape aggregation decreased PM2.5 levels, while at a larger scale (5000 m), landscape splitting facilitated PM2.5 dispersion. According to the partial R2 results, vegetation-related land use types were significant, with the shrubland proportion positively correlated with local-scale PM2.5 concentrations in spring. Bare vegetation areas were the primary positive factor in autumn, whereas the mitigating effect of tree cover contrasted with this trend, even in winter. The NDVI, an index used to assess vegetation growth, was not determined to be a primary influencing factor. The findings reaffirm the function of vegetation cover in reducing PM2.5. Based on the research, actionable strategies for PM2.5 pollution control were outlined to promote sustainable development in the region.

Funder

National Natural Science Foundation of China

Doctoral Start-up Foundation of the Department of Science and Technology of Liaoning Province

Basic Scientific Research Project of the Educational Department of Liaoning Province

Doctoral Start-up Foundation of Shenyang Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3