Contributing to Carbon Neutrality Targets: A Scenario Simulation and Pattern Optimization of Land Use in Shandong Province Based on the PLUS Model

Author:

Ma Xiang-Yi1ORCID,Xu Yi-Fan1,Sun Qian2,Liu Wen-Jun1,Qi Wei1

Affiliation:

1. College of Resource and Environment, Shandong Agricultural University, Tai’an 271018, China

2. College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, China

Abstract

Land use profoundly impacts the sustainable development of the ecological environment. Optimizing land use patterns is a vital approach to mitigate climate change and achieve carbon neutrality. Using Shandong Province as a case study, this research evaluates the impacts of land use and land cover change (LUCC) on regional carbon storage and emissions. Employing a coupled PLUS–InVEST–GM(1,1) model, simulations were conducted for scenarios including the natural scenario (NS), cropland protection scenario (CPS), high-speed development scenario (HDS), and low-carbon scenario (LCS), to assess LUCC and changes in carbon storage and emissions from 2030 to 2060 under these scenarios. The findings indicate that due to the expansion of construction land and significant declines in arable and grassland areas, carbon emissions increased by 40,436.44 × 104 t over a 20-year period, while carbon storage decreased by 4881.13 × 104 t. Notably, forests contributed the most to carbon sequestration, while construction land emerged as the primary source of carbon emissions. Simulating four scenarios demonstrates that measures such as protecting cropland, expanding forest, grassland, and aquatic areas, controlling construction land expansion, and promoting intensive development positively affect emission reductions and carbon sequestration in Shandong. These findings underscore the importance of rational planning of land use patterns, which can enhance contributions to carbon neutrality by harmonizing the relationships among cropland protection, ecological conservation, and economic development.

Publisher

MDPI AG

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3