Affiliation:
1. College of Resource and Environment, Shandong Agricultural University, Tai’an 271018, China
2. College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
Abstract
Land use profoundly impacts the sustainable development of the ecological environment. Optimizing land use patterns is a vital approach to mitigate climate change and achieve carbon neutrality. Using Shandong Province as a case study, this research evaluates the impacts of land use and land cover change (LUCC) on regional carbon storage and emissions. Employing a coupled PLUS–InVEST–GM(1,1) model, simulations were conducted for scenarios including the natural scenario (NS), cropland protection scenario (CPS), high-speed development scenario (HDS), and low-carbon scenario (LCS), to assess LUCC and changes in carbon storage and emissions from 2030 to 2060 under these scenarios. The findings indicate that due to the expansion of construction land and significant declines in arable and grassland areas, carbon emissions increased by 40,436.44 × 104 t over a 20-year period, while carbon storage decreased by 4881.13 × 104 t. Notably, forests contributed the most to carbon sequestration, while construction land emerged as the primary source of carbon emissions. Simulating four scenarios demonstrates that measures such as protecting cropland, expanding forest, grassland, and aquatic areas, controlling construction land expansion, and promoting intensive development positively affect emission reductions and carbon sequestration in Shandong. These findings underscore the importance of rational planning of land use patterns, which can enhance contributions to carbon neutrality by harmonizing the relationships among cropland protection, ecological conservation, and economic development.