Black Sea Eutrophication Comparative Analysis of Intensity between Coastal and Offshore Waters

Author:

Lazar Luminita1ORCID,Vlas Oana2ORCID,Pantea Elena2ORCID,Boicenco Laura3ORCID,Marin Oana2,Abaza Valeria2,Filimon Adrian2ORCID,Bisinicu Elena2ORCID

Affiliation:

1. Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development “Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania

2. Ecology and Marine Biology Department, National Institute for Marine Research and Development “Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania

3. National Institute for Marine Research and Development “Grigore Antipa”, 300 Mamaia Blvd., 900581 Constanta, Romania

Abstract

Eutrophication, driven by excessive nutrient enrichment from sources like agricultural runoff, industrial discharge, and urbanisation, has severely impacted the Black Sea since the 1980s. This study aimed to assess eutrophication dynamics in the Romanian Exclusive Economic Zone from 2020 to 2022 using the Black Sea Eutrophication Assessment Tool (BEAST), an integrated approach to the causes and effects of eutrophication. Data were collected from 68 stations during five oceanographic expeditions, analysing 617 water samples for nutrients, chlorophyll a, zooplankton species Noctiluca scintillans, and dissolved oxygen. Additionally, 179 zoobenthic and 251 phytobenthic community samples were collected. The results indicate that coastal waters exhibit higher nutrient levels and algal blooms compared to offshore waters, necessitating significant reductions in nutrient concentrations to achieve good environmental status. In transitional waters, within the Danube Delta Biosphere Reserve, a 55% reduction in inorganic phosphorus and a 43% reduction in inorganic nitrogen concentrations are required, while coastal waters need reductions of 38% and 37%, respectively. The study highlights the need for improved wastewater treatment, stricter agricultural runoff controls, and continuous monitoring. Effective ecosystem-based management strategies, integrated coastal zone management, and international cooperation are essential to mitigate eutrophication and promote the long-term health of the Black Sea ecosystem.

Funder

European Union

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3