Microwave Assisted Synthesis of CoFe2O4 Nanoparticles by Utilizing Organic Promoters and Evaluation of Its Properties

Author:

Ahmadi Rahil,Imani Mina,Tadjarodi Azadeh

Abstract

Nano-sized spinel ferrites are highly regarded owing to their special optical, electrical, and magnetic properties. Cobalt ferrite (CoFe2O4) is a nominee of particular interest due to its high saturation magnetization, high coercivity, strong anisotropy, and excellent chemical stability. The synthesis of these materials with a pure crystalline phase is sometimes limited due to the required high temperatures for their calcination. In this work, we report a one-pot simple synthesis procedure of cobalt ferrite by the auto-combustion under microwave irradiation into a domestic microwave oven with a power of 900 W for 30 min. Glycine and ammonium nitrate were used as organic promoters and metal nitrates as precursors. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersion of X-ray spectrometry (EDX) techniques. The electrochemical properties and capability of the prepared product as a pseudocapacitive material were evaluated using cyclic voltammetry (CV) tests in details.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3