Affiliation:
1. Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Moniz Aragão 360, Bloco 8G/CT2, Rio de Janeiro 21941-594, RJ, Brazil
Abstract
The development of active food packaging is desirable for food safety and to avoid food loss and waste. In this work, we developed antioxidant bilayer films combining extrusion and electrospinning techniques. These films consisted of a first layer of thermoplastic cornstarch (TPS), incorporated with microcrystalline cellulose (MCC). The second layer consisted of gallic acid (GA) encapsulated at different concentrations in 1:1 chitosan/poly(ethylene-co-vinyl alcohol) (CS/EVOH) nanofibers. This layer was directly electrospun onto the TPS/MCC film. The morphological, structural, wettability, permeability to oxygen, and antioxidant properties were investigated for the first layer and the bilayer films. Water contact angle measurements revealed the hydrophobic nature of the first layer (θ0 = 100.6°). The oxygen permeability (OP) was accessed through the peroxide value (PV) of canola oil, kept in containers covered by the films. PV varied from 66.6 meq/kg for the TPS/MCC layer to 60.5 meq/kg for a bilayer film. Intermolecular hydrogen bonds, mediated by GA, contributed slightly to improving the mechanical strength of the bilayer films. The bilayer film incorporated with GA at 15.0% reached a radical scavenging activity against the DPPH radical of (903.8 ± 62.2) μmol.L−1.Eq. Trolox.g−1. This result proved the effectiveness of the GA nanoencapsulation strategy.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil