Effects of Magnetic Fields on Quench Characteristics of Superconducting Tape for Superconducting Fault Current Limiter

Author:

Xiang Bin,Gao Lei,Junaid MuhammadORCID,Liu Zhiyuan,Geng Yingsan,Wang Jianhua,Yanabu Satoru

Abstract

In DC systems, DC resistive type superconducting fault current limiters (R-SFCLs) can respond within a few hundred milliseconds and limit the fault current to a very low level to protect the power equipment in DC systems. The main part of R-SFCLs are superconducting tapes. When short-circuit faults occur in the system, the superconducting tapes will quench and become a large quenched resistor to limit the fault current. The surrounding magnetic fields and the magnetic fields caused by the superconducting tapes itself influence the quench characteristics of the superconducting tapes of R-SFCLs. Thus, the current limiting characteristics of R-SFCLs will also be affected. Until present, very few studies have investigated the effects of magnetic fields on quench characteristics of superconducting tapes for DC R-SFCL. The objective of this paper is to obtain the effects of magnetic fields on quench characteristics of superconducting tapes for DC R-SFCL. Two different kinds of YBa2Cu3O7-δ (YBCO) tapes are studied under a permanent magnetic field of 0, 42.4, 75.9, 122.9 mT, respectively. One is from Shanghai Superconductor Technology Co., Ltd., Shanghai, China, type ST-12-L (named SC_SH) and the other is from American Superconductor Inc. Boston, MA, USA, type 8602 (named SC_8602). The research results show that the magnetic fields influence both the amplitude and the rising rate of the quenched resistance of an SC_SH tape. Under the same magnetic field, both the speed of quenching and the quenching resistance of SC_SH tape are larger than them of SC_8602 when the prospective current exceeds 800 A. Thus SC_SH tape can limit the fault current faster and to a lower level.

Funder

National Program on Key Basic Research Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3