SWAAT Bioinformatics Workflow for Protein Structure-Based Annotation of ADME Gene Variants

Author:

Othman HoucemeddineORCID,Jemimah SherlynORCID,da Rocha Jorge Emanuel BatistaORCID

Abstract

Recent genomic studies have revealed the critical impact of genetic diversity within small population groups in determining the way individuals respond to drugs. One of the biggest challenges is to accurately predict the effect of single nucleotide variants and to get the relevant information that allows for a better functional interpretation of genetic data. Different conformational scenarios upon the changing in amino acid sequences of pharmacologically important proteins might impact their stability and plasticity, which in turn might alter the interaction with the drug. Current sequence-based annotation methods have limited power to access this type of information. Motivated by these calls, we have developed the Structural Workflow for Annotating ADME Targets (SWAAT) that allows for the prediction of the variant effect based on structural properties. SWAAT annotates a panel of 36 ADME genes including 22 out of the 23 clinically important members identified by the PharmVar consortium. The workflow consists of a set of Python codes of which the execution is managed within Nextflow to annotate coding variants based on 37 criteria. SWAAT also includes an auxiliary workflow allowing a versatile use for genes other than ADME members. Our tool also includes a machine learning random forest binary classifier that showed an accuracy of 73%. Moreover, SWAAT outperformed six commonly used sequence-based variant prediction tools (PROVEAN, SIFT, PolyPhen-2, CADD, MetaSVM, and FATHMM) in terms of sensitivity and has comparable specificity. SWAAT is available as an open-source tool.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3