Effect of AlN on the Mechanical and Electrochemical Properties of Aluminum Metal Matrix Composites

Author:

Abdelatty Rokaya H.12,Radwan Ahmed Bahgat1ORCID,Youssef Khaled23ORCID,Ijaz Muhammad Farzik4ORCID,Abdul Shakoor Rana13ORCID

Affiliation:

1. Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar

2. Materials Science and Technology Graduate Program, Department of Physics and Materials Science, Qatar University, Doha 2713, Qatar

3. Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar

4. Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

In the present investigation, aluminum metal matrix composites (AMMs) reinforced with aluminum nitride (AlN) nanoparticulates at different volumetric ratios of (0, 0.5, 1, 1.5, and 2 vol.%) were manufactured via a microwave-assisted powder metallurgy technique. The morphological, physical, mechanical, and electrochemical properties of the produced billets were examined to reflect the impact of the successive addition of AlN into the aluminum (Al) matrix. The morphological analysis revealed the high crystalline patterns of the formation of the Al-AlN composites. The microstructural analysis confirmed the presence of the elemental constituents of Al and AlN particles in the fabricated composites, showing an enhanced degree of agglomeration in conjunction with the additional amount of AlN. Positive behavior exhibited by the micro- and nanohardness was noticeable in the Al-AlN composites, especially at the ultimate concentration of AlN in the Al matrix of a 2 vol.%, where it reached 669.4 ± 28.1 MPa and 659.1 ± 11 MPa compared to the pure Al metal at 441.2 ± 20 MPa and 437.5 ± 11 MPa, respectively. A declining trend in the compressive strength was recorded in the reinforced Al samples. The corrosion resistance of the AlN-reinforced Al metal matrix was estimated at 3.5 wt.% NaCl using electrochemical impedance spectroscopy and potentiodynamic polarization. The results reveal that the inclusion of 2.0 vol.%AlN led to the lowest corrosion rate.

Funder

Researchers Supporting Project

King Saud University, Riyadh, Saudi Arabia

Qatar National Library, Qatar

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3