Fast, Zero-Reference Low-Light Image Enhancement with Camera Response Model

Author:

Wang Xiaofeng12,Huang Liang1,Li Mingxuan1,Han Chengshan1,Liu Xin1,Nie Ting1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Low-light images are prevalent in intelligent monitoring and many other applications, with low brightness hindering further processing. Although low-light image enhancement can reduce the influence of such problems, current methods often involve a complex network structure or many iterations, which are not conducive to their efficiency. This paper proposes a Zero-Reference Camera Response Network using a camera response model to achieve efficient enhancement for arbitrary low-light images. A double-layer parameter-generating network with a streamlined structure is established to extract the exposure ratio K from the radiation map, which is obtained by inverting the input through a camera response function. Then, K is used as the parameter of a brightness transformation function for one transformation on the low-light image to realize enhancement. In addition, a contrast-preserving brightness loss and an edge-preserving smoothness loss are designed without the requirement for references from the dataset. Both can further retain some key information in the inputs to improve precision. The enhancement is simplified and can reach more than twice the speed of similar methods. Extensive experiments on several LLIE datasets and the DARK FACE face detection dataset fully demonstrate our method’s advantages, both subjectively and objectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference49 articles.

1. Brightness Preserving Dynamic Histogram Equalization for Image Contrast Enhancement;Ibrahim;IEEE Trans. Consum. Electron.,2007

2. Minimum mean brightness error bi-histogram equalization in contrast enhancement;Chen;IEEE Trans. Consum. Electron.,2004

3. Comparative study of histogram equalization algorithms for image enhancement;Lu;Proc. SPIE Int. Soc. Opt. Eng.,2010

4. LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model;Ren;IEEE Trans. Image Process.,2020

5. Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model;Li;IEEE Trans. Image Process.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3