Progressive Dilution of Point Clouds Considering the Local Relief for Creation and Storage of Digital Twins of Cultural Heritage

Author:

Štroner MartinORCID,Křemen Tomáš,Urban Rudolf

Abstract

Currently, the creation of digital copies (digital twins) of various objects by remote sensing methods producing point clouds is becoming commonplace. This might be particularly important for the digital preservation of historical objects. Such clouds are typically primarily acquired as unordered sets of points with regular dense spacing, making the clouds huge in size, which causes such clouds to be difficult to process, store and share. The clouds are, therefore, usually diluted before use, typically through uniform dilution with a set spacing; such dilution can, however, lead to the loss of detail in the resulting cloud (washed-out edges and fine features). In this paper, we present an easy-to-use and computationally inexpensive progressive dilution method preserving detail in highly rugged/curved areas while significantly reducing the number of points in flat areas. This is done on the basis of a newly proposed characteristic T, which is based on the local scattering of the cloud (i.e., on the ruggedness of the local relief). The performance of this algorithm is demonstrated on datasets depicting parts of historic buildings of different characters. The results are evaluated on the basis of (a) root mean square deviation (RMSD) between the original and diluted clouds, (b) of visual evaluation of the differences and (c) of reduction in the point cloud size, demonstrating an excellent performance of the algorithm with a minimum loss of detail while significantly reducing the point clouds (approx. by 47–66% compared to the corresponding uniform dilution for individual datasets)

Funder

Technology Agency of the Czech Republic

Grant Agency of CTU in Prague

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3