A Joint Dispatch Operation Method of Hydropower and Photovoltaic: Based on the Two-Stage Hedging Model

Author:

Xie TuoORCID,Liu Hong,Zhang GangORCID,Zhang Kaoshe,Li Pai

Abstract

The randomness and volatility of large-scale clean energy output represented by wind power and photovoltaic lead to difficulties in grid connection. The problems of abandoned wind, light, and water become increasingly prominent. The adjustment capacity of traditional thermal power is limited and it is difficult to ensure the consumption of high proportion clean energy. On this basis, the marginal benefit hedging rule in economics is introduced into the hydropower and photovoltaic joint operation system in this paper. A two-stage spatio-temporal hedging strategy is designed to solve the spatio-temporal conflict problem in the hydropower and photovoltaic joint system. The multi-objective joint dispatching model of hydropower and photovoltaic system considering system benefits, risks, and stability is established, which can be solved by a MOEA/D-GABS algorithm with selection strategy. The joint system scheduling schemes under different schemes are analyzed by case. The results demonstrate that, compared with the traditional multi-objective decision-making scheme, the flood control risk in each period of the reservoir in the proposed method is controlled to be no more than 1.63 × 10−3 (the flood control standard corresponding to the 50-year flood control risk is 0.006); the flood limit water level of the reservoir is increased from 583.00 m to 583.70 m, which improves the benefit of the reservoir; and the water utilization rate is effectively improved. On the other hand, compared with the traditional scheme, the proposed method reduces the peak valley difference of the combined system by 50.67% and 59.68% in typical sunny and cloudy scenarios, respectively, which greatly reduces the uncertainty of photovoltaic output, and the stability of the combined system is improved. It is shown that the proposed method can be used to guide the economic dispatch of a complementary system with hydropower as the regulating energy.

Funder

Open Fund of State Key Laboratory of Operation and Control of Renewable Energy and Storage Systems

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. study on combined operation of hydro and wind power generation system;Acta Energ. Sol. Sin.,2009

2. Combining hydro-generation and wind energy: Biddings and operation on electricity spot markets;Eletr. Power Syst. Res.,2007

3. Optimal Operation of Complementary Microgrid with Hybrid Wind-Solar-Hydro Power;Electr. Equip.,2014

4. Efficient simulation of Hybrid Renewable Energy Systems;Int. J. Hydrogen Energy,2016

5. Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia;Appl. Energy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3