An Approach of Path Optimization Algorithm for 3D Concrete Printing Based on Graph Theory

Author:

Ma Zongfang,Wan Weipeng,Song Lin,Liu Chao,Liu Huawei,Wu Yiwen

Abstract

In this paper, a method of 3D concrete printing is used to find the optimal path of the nozzle running path. We propose a path optimization algorithm based on graph theory to solve two key problems in 3D concrete printing. The partitioning algorithm based on graph theory was adopted to improve the forming quality of concrete components, and ant colony algorithm was used to reduce printing time. The method was evaluated with 3D concrete printing experiments after introducing the process of implementing the partition algorithm and ant colony algorithm. The experiment results show a significant reduction in the idle strokes and the nozzle head-up times of the running path planned by the method in this paper. This has a direct impact on shortening the printing time and improving the forming quality. Compared with the other three conventional algorithms, the idle strokes of the nozzle planned by the method in this paper are reduced by 18.94%, 37.88%, and 66.67%, and the nozzle head-up times are reduced by 1.59%, 2.15%, and 8.69%. It provides a practical reference for the path optimization of 3D concrete printing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Tool-path Optimization for Minimizing Airtime during Machining;J. Manuf. Syst.,2004

2. Mesh reinforcing method for 3D Concrete Printing;Autom. Constr.,2019

3. Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate;Addit. Manuf.,2022

4. A review of the current progress and application of 3D printed concrete;Compos. Part A Appl. Sci. Manuf.,2019

5. Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete;J. Clean. Prod.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3