Abstract
Transfusion-associated bacterial infections continue to occur which may be due to the formation of bacterial biofilms on the inner surface of the blood bag. Plasticized poly (vinyl chloride) (p-PVC) platelet storage bags in three surface roughness states (rough, smooth and flattened) were used to determine the effect that a conditioning film (CF) of human plasma had on surface properties and its interaction with Staphylococcus epidermidis and Serratia marcescens. SEM and optical profilometry determined changes in surface roughness, whilst EDX and ATR-FTIR determined surface chemistry. The physicochemistry of the surfaces and bacteria was assessed using contact angle measurements and MATH assays respectively. When applied to a rougher surface, the CF reduced the surface topography, masked certain surface chemistry features and made the surfaces more hydrophilic. The CF reduced the adhesion of the bacteria to most of the hydrocarbons. When human plasma was combined with bacteria, most of the physicochemical properties changed similarly to those of human plasma alone, with the most significant changes observed after 24 h especially with Ser. marcescens. The results demonstrated that the presence of human plasma had a significant effect on the surface properties of the platelet bags and also on microbial interactions with the bag surface.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献