An Analytical Solution for the Deformation of Soft Ground Reinforced by Columnar Inclusions under Equal Stress Conditions

Author:

Zhou ZanORCID,Lok Thomas Man-Hoi,Zhou Wan-Huan,Zhao Lin-Shuang

Abstract

Columnar inclusion is a versatile and cost-effective technique for improving weak soils. Currently, most approaches are based on the “equal strain” assumption to calculate the deformation of soft ground reinforced by columnar inclusions. In this study, a new model to simulate the behavior of column-reinforced soft soil under equal stress conditions based on the variational principles is proposed. The proposed model satisfies the force equilibrium and deformation compatibility simultaneously, which is seldom fulfilled in traditional empirical methods or other analytical models. The corresponding analytical solution is obtained and its accuracy is verified by comparing it with the numerical solutions using finite element analysis. The comparisons of the proposed solution with an existing solution show that the proposed solution can provide very close agreement over a wide range of parameters while the existing solution is only able to provide a reasonable agreement for a certain range of stiffness ratio of the column and soft ground. In addition, a parametric study is made to illustrate the influence of various parameters on ground settlement predictions. The parametric study indicated that, by increasing the ratio of elastic modulus between the stone column and surrounding soils and the ratio between the radius of the stone column and the space of the stone column, the load transfer effect has been significantly improved, and the ground settlement becomes smaller. Furthermore, the Poisson’s ratio of the surrounding soil also has a very significant effect on ground settlement, while the effect of the Poisson’s ratio of the stone column on ground settlement is less significant compared with that of the surrounding soil.

Funder

Science and Technology Development Fund, Macau SAR, and the assistantship from the Faculty of Science and Technology, University of Macau

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3