An Improved Artificial Ecosystem Algorithm for Economic Dispatch with Combined Heat and Power Units

Author:

Mahdy Araby,El-Sehiemy RagabORCID,Shaheen AbdullahORCID,Ginidi AhmedORCID,Elbarbary Zakaria M. S.ORCID

Abstract

The most effective use of numerous Combined Heat and Power Units (CHPUs) is a challenging issue that requires strong approaches to handle the Economic Dispatch (ED) with CHPUs. It aims at minimizing the fuel costs by managing the Power-Only Units (POUs), CHPUs, and Heat-Only Units (HOUs). The transmission losses are also integrated, which increases the non-convexity of the ED problem. This paper proposes a Modified Artificial Ecosystem Algorithm (MAEA) motivated by three energy transfer processes in an ecosystem: production, consumption, and decomposition. The MAEA incorporates a Fitness Distance Balance Model (FDBM) with the basic AEA to improve the quality of the solution in non-linear and multivariate optimization environments. The FDBM is a selection approach meant to find individuals which will provide the most to the searching pathways within a population as part of a reliable and productive approach. Consequently, the diversity and intensification processes are carried out in a balanced manner. The basic AEA and the proposed MAEA are performed, in a comparative manner considering the 7-unit and 48-unit test systems. According to numerical data, the proposed MAEA shows a robustness improvement of 97.31% and 96.63% for the 7-unit system and 46.03% and 60.57% for the 48-unit system, with and without the power losses, respectively. On the side of convergence, based on the average statistics, the proposed MAEA shows a considerable improvement of 47% and 43% of the total number of iterations for the 7-unit system and 13% and 20% of the total number of iterations for the 48-unit system, with and without the power losses, respectively. Thus, the suggested MAEA provides significant improvements in the robustness and convergence properties. The proposed MAEA also provides superior performance compared with different reported results, which indicates a promising solution methodology based on the proposed MAEA.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3