Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix

Author:

Andreeva Elena,Matveeva Diana,Zhidkova Olga,Zhivodernikov Ivan,Kotov Oleg,Buravkova LudmilaORCID

Abstract

The lack of gravitational loading is a pivotal risk factor during space flights. Biomedical studies indicate that because of the prolonged effect of microgravity, humans experience bone mass loss, muscle atrophy, cardiovascular insufficiency, and sensory motor coordination disorders. These findings demonstrate the essential role of gravity in human health quality. The physiological and pathophysiological mechanisms of an acute response to microgravity at various levels (molecular, cellular, tissue, and physiological) and subsequent adaptation are intensively studied. Under the permanent gravity of the Earth, multicellular organisms have developed a multi-component tissue mechanosensitive system which includes cellular (nucleo- and cytoskeleton) and extracellular (extracellular matrix, ECM) “mechanosensory” elements. These compartments are coordinated due to specialized integrin-based protein complexes, forming a distinctive mechanosensitive unit. Under the lack of continuous gravitational loading, this unit becomes a substrate for adaptation processes, acting as a gravisensitive unit. Since the space flight conditions limit large-scale research in space, simulation models on Earth are of particular importance for elucidating the mechanisms that provide a response to microgravity. This review describes current state of art concerning mammalian ECM as a gravisensitive unit component under real and simulated microgravity and discusses the directions of further research in this field.

Funder

Russian Foundation for Basic Research

Program of Basic Research of IBMP RAS

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3