Author:
Peng Jiangbo,Cao Zhen,Yu Xin,Yu Yang,Chang Guang,Wang Zhiqiang
Abstract
Over recent years, much attention has been paid to the performance evaluation of industrial-type burners. The ignition and stable combustion process are of great significance in assessing the quality of burner. The planar laser-induced fluorescence (PLIF) technique can be applied to heavy oil boilers, extending this technique to engineering applications. Considering the complex environment of the bench test, measures such as temperature control and moisture proofing are made to improve the possibility of detection using PLIF. In this paper, an experimental investigation of flame growth following ignition is reported. A wrinkled structure could be observed from the configuration of the ignition flame; its trajectory will be depicted. The results showed that the wrinkled structure developed downward, i.e., by deviation from the direction of the airflow. The displacement velocity of the flame was used to describe the combustion rate. Good agreement was obtained for the flame shapes of both forced ignition and autoignition. In addition, the center of combustion deviated from the center of boiler, possibly due to some irregularity in the burner’s assembly which was critical to the design of the combustion chamber.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献