Evaluation of the Synergistic Oil Displacement Effect of a CO2 Low Interfacial Tension Viscosity-Increasing System in Ultra-Low Permeability Reservoirs

Author:

Chen Zequn1,Dong Yuanwu1,Hu Hao1,Zhang Xinyue1,Tang Shanfa1

Affiliation:

1. State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Department of Petroleum Engineering, Yangtze University, Wuhan 434023, China

Abstract

In addressing the issue of poor control over gas permeability during the CO2 flooding process in ultra-low permeability reservoirs, this study proposes the use of a low interfacial tension viscosity-increasing system as a substitute for water in CO2–water alternating flooding to enhance CO2 mobility control and increase oil recovery. The performance of the system was evaluated through tests of viscosity, interfacial tension, wettability, and emulsification properties, and the injection behavior and gas channeling prevention effect of the viscosity-increasing system with CO2 alternate flooding were investigated. The results indicate that the low interfacial tension viscosity-increasing fluid exhibits good thickening properties, interfacial activity, hydrophilic wettability, and oil–water emulsification performance, also demonstrating strong environmental adaptability. The CO2–low interfacial tension viscosity-increasing fluid alternate flooding shows good injectivity in ultra-low permeability cores (1.085 mD). Following water flooding in heterogeneous ultra-low permeability cores, the implementation of CO2 low interfacial tension viscosity-increasing fluid alternate flooding can lead to a 15.91% increase in overall recovery compared to water flooding, outperforming CO2 flooding and CO2–water alternating flooding. The mechanisms by which the CO2 low interfacial tension viscosity-increasing fluid enhances oil recovery include reducing interfacial tension, improving mobility ratio, altering rock surface wettability, and emulsification effects. The low interfacial tension viscosity-increasing systems demonstrate effective mobility control and oil displacement capabilities and synergistically enhance the efficiency of CO2, presenting potential application prospects in the development of CO2 flooding in ultra-low permeability reservoirs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3