Sperm Methylome Profiling Can Discern Fertility Levels in the Porcine Biomedical Model

Author:

Pértille FabioORCID,Alvarez-Rodriguez ManuelORCID,da Silva Arthur NeryORCID,Barranco IsabelORCID,Roca JordiORCID,Guerrero-Bosagna Carlos,Rodriguez-Martinez HeribertoORCID

Abstract

A combined Genotyping By Sequencing (GBS) and methylated DNA immunoprecipitation (MeDIP) protocol was used to identify—in parallel—genetic variation (Genomic-Wide Association Studies (GWAS) and epigenetic differences of Differentially Methylated Regions (DMR) in the genome of spermatozoa from the porcine animal model. Breeding boars with good semen quality (n = 11) and specific and well-documented differences in fertility (farrowing rate, FR) and prolificacy (litter size, LS) (n = 7) in artificial insemination programs, using combined FR and LS, were categorized as High Fertile (HF, n = 4) or Low Fertile (LF, n = 3), and boars with Unknown Fertility (UF, n = 4) were tested for eventual epigenetical similarity with those fertility-proven. We identified 165,944 Single Nucleotide Polymorphisms (SNPs) that explained 14–15% of variance among selection lines. Between HF and LF individuals (n = 7, 4 HF and 3 LF), we identified 169 SNPs with p ≤ 0.00015, which explained 58% of the variance. For the epigenetic analyses, we considered fertility and period of ejaculate collection (late-summer and mid-autumn). Approximately three times more DMRs were observed in HF than in LF boars across these periods. Interestingly, UF boars were clearly clustered with one of the other HF or LF groups. The highest differences in DMRs between HF and LF experimental groups across the pig genome were located in the chr 3, 9, 13, and 16, with most DMRs being hypermethylated in LF boars. In both HF and LF boars, DMRs were mostly hypermethylated in late-summer compared to mid-autumn. Three overlaps were detected between SNPs (p ≤ 0.0005, n = 1318) and CpG sites within DMRs. In conclusion, fertility levels in breeding males including FR and LS can be discerned using methylome analyses. The findings in this biomedical animal model ought to be applied besides sire selection for andrological diagnosis of idiopathic sub/infertility.

Funder

Research Council FORMAS, Stockholm

FAPESP

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3