Mechanical Wave Propagation in Solidifying Al-Cu-Mn-Ti Alloy and Its Effect on Solidification Feeding

Author:

Chen Wei,Wu Shiping,Wang Rujia

Abstract

The wave field in solidifying metals is the theoretical basis for analyzing the effects of mechanical vibration on solidification, but there is little research on this topic. This study investigated the wave field and its effect on the solidification feeding in the low-pressure sand casting (LPSC) of Al-Cu-Mn-Ti alloy through experimental and numerical investigation. The solidification temperature field was simulated by AnycastingTM, and the wave field was simulated by the self-developed wave propagation software. The shrinkage defect detection showed that applying vibration had a greater promotional effect on feeding than increasing the holding pressure. The predicted defects under vibration coincided with the detections. The displacement field showed that the casting vibrated harmonically with an inhomogeneous amplitude distribution under the continuous harmonic vibration excitation, and the vibration energy was mainly concentrated in the feeding channel. With solidification, the ux amplitude reduced rapidly after the overlapping of dendrites, finally reducing slowly to a certain level; the uy amplitude reduced dramatically after the occurrence of a quasi-solid phase, finally reducing slowly to near zero. Mechanical vibration produced a severe shear deformation in the quasi-liquid phase—especially in the lower feeding channel—reducing the grain size to promote mass feeding. The feeding pressure and feeding gap were changed periodically under vibration, causing the vibration-promoting interdendritic feeding rate to fluctuate and eventually stabilize at about 13.4%. The mechanical vibration can increase the feeding pressure difference and change the blockage structure simultaneously, increasing the formation probability of burst feeding.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3