Artificial Neural Networks: Multilayer Perceptron and Radial Basis to Obtain Post-Contingency Loading Margin in Electrical Power Systems

Author:

Bonini Neto AlfredoORCID,Alves Dilson Amancio,Minussi Carlos RobertoORCID

Abstract

This paper presents the ANN (Artificial Neural Networks) approach to obtaining complete P-V curves of electrical power systems subjected to contingency. Two networks were presented: the MLP (multilayer perceptron) and the RBF (radial basis function) networks. The differential of our methodology consisted in the speed of obtaining all the P-V curves of the system. The great advantage of using ANN models is that they can capture the nonlinear characteristics of the studied system to avoid iterative procedures. The applicability and effectiveness of the proposed methodology have been investigated on IEEE test systems (14 buses) and compared with the continuation power flow, which obtains the post-contingency loading margin starting from the base case solution. From the results, the ANN performed well, with a mean squared error (MSE) in training below the specified value. The network was able to estimate 98.4% of the voltage magnitude values within the established range, with residues around 10−4 and a percentage of success between the desired and obtained output of approximately 98%, with better result for the RBF (radial basis function) network compared to MLP (multilayer perceptron).

Funder

Brazilian Research Funding Agencies CNPq

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3