Advanced Detection of Invasive Neophytes in Agricultural Landscapes: A Multisensory and Multiscale Remote Sensing Approach

Author:

Thürkow Florian1ORCID,Lorenz Christopher Günter2ORCID,Pause Marion3ORCID,Birger Jens2

Affiliation:

1. School of Engineering and Computer Science, Bern University of Applied Sciences, 2501 Biel, Switzerland

2. Umwelt- und GeodatenManagement GbR, 06108 Halle (Saale), Germany

3. Institute for Geo-Information and Land Surveying, Anhalt University of Applied Sciences, Seminarplatz 2a, 06846 Dessau, Germany

Abstract

The sustainable provision of ecological products and services, both natural and man-made, faces a substantial threat emanating from invasive plant species (IPS), which inflict considerable economic and ecological harm on a global scale. They are widely recognized as one of the primary drivers of global biodiversity decline and have become the focal point of an increasing number of studies. The integration of remote sensing (RS) and geographic information systems (GIS) plays a pivotal role in their detection and classification across a diverse range of research endeavors, emphasizing the critical significance of accounting for the phenological stages of the targeted species when endeavoring to accurately delineate their distribution and occurrences. This study is centered on this fundamental premise, as it endeavors to amass terrestrial data encompassing the phenological stages and spectral attributes of the specified IPS, with the overarching objective of ascertaining the most opportune time frames for their detection. Moreover, it involves the development and validation of a detection and classification algorithm, harnessing a diverse array of RS datasets, including satellite and unmanned aerial vehicle (UAV) imagery spanning the spectrum from RGB to multispectral and near-infrared (NIR). Taken together, our investigation underscores the advantages of employing an array of RS datasets in conjunction with the phenological stages, offering an economically efficient and adaptable solution for the detection and monitoring of invasive plant species. Such insights hold the potential to inform both present and future policymaking pertaining to the management of invasive species in agricultural and natural ecosystems.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kudzu invasion and its influential factors in the southeastern United States;International Journal of Applied Earth Observation and Geoinformation;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3