Low-Overhead Reinforcement Learning-Based Power Management Using 2QoSM

Author:

Giardino MichaelORCID,Schwyn DanielORCID,Ferri BonnieORCID,Ferri AldoORCID

Abstract

With the computational systems of even embedded devices becoming ever more powerful, there is a need for more effective and pro-active methods of dynamic power management. The work presented in this paper demonstrates the effectiveness of a reinforcement-learning based dynamic power manager placed in a software framework. This combination of Q-learning for determining policy and the software abstractions provide many of the benefits of co-design, namely, good performance, responsiveness and application guidance, with the flexibility of easily changing policies or platforms. The Q-learning based Quality of Service Manager (2QoSM) is implemented on an autonomous robot built on a complex, powerful embedded single-board computer (SBC) and a high-resolution path-planning algorithm. We find that the 2QoSM reduces power consumption up to 42% compared to the Linux on-demand governor and 10.2% over a state-of-the-art situation aware governor. Moreover, the performance as measured by path error is improved by up to 6.1%, all while saving power.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Resource Scheduling for IoT Systems Using Reinforcement Learning;Journal of Low Power Electronics and Applications;2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3