Abstract
The shift towards renewable energy and decreasing battery prices have led to numerous installations of PV and battery systems in industrial and public buildings. Furthermore, the fluctuation of energy costs is increasing since energy sources based on solar and wind power depend on the weather situation. In order to reduce energy costs, it is necessary to plan energy-hungry activities while taking into account private PV production, battery capacity, and energy market prices. This problem was posed in the 2021 “IEEE-CIS Technical Challenge on Predict + Optimize for Renewable Energy Scheduling”. The target was to solve the two subtasks of forecasting the base load and of computing an optimal schedule of a list of energy intensive activities with inter-dependencies. We describe our approach to this challenge, which resulted in the third place of the leaderboard. For the prediction of the base load, we use a combination of a statistical and a machine learning approach. For the optimization of schedules, we employ a tuned mixed integer linear programming approach. We present a detailed experimental evaluation of the proposed approach on the use case and data provided in the challenge.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference43 articles.
1. Europe’s Climate Target for 2050: An Assessment
2. Smart Grid for Industry Using Multi-Agent Reinforcement Learning
3. IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Schedulinghttps://ieee-dataport.org/competitions/ieee-cis-technical-challenge-predictoptimize-renewable-energy-scheduling
4. Scikit-learn: Machine Learning in Python;Pedregosa;J. Mach. Learn. Res.,2011
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献