Implementation of QbD Approach to the Development of Chromatographic Methods for the Determination of Complete Impurity Profile of Substance on the Preclinical and Clinical Step of Drug Discovery Studies

Author:

Gurba-Bryśkiewicz LidiaORCID,Dawid Urszula,Smuga Damian A.,Maruszak WioletaORCID,Delis Monika,Szymczak Krzysztof,Stypik Bartosz,Moroz Aleksandra,Błocka Aleksandra,Mroczkiewicz Michał,Dubiel Krzysztof,Wieczorek Maciej

Abstract

The purpose of this work was to demonstrate the use of the AQbD with the DOE approach to the methodical step-by-step development of a UHPLC method for the quantitative determination of the impurity profile of new CPL409116 substance (JAK/ROCK inhibitor) on the preclinical and clinical step of drug discovery studies. The critical method parameters (CMPs) have been tested extensively: the kind of stationary phase (8 different columns), pH of the aqueous mobile phase (2.6, 3.2, 4.0, 6.8), and start (20–25%) and stop (85–90%) percentage of organic mobile phase (ACN). The critical method attributes (CMAs) are the resolution between the peaks (≥2.0) and peak symmetry of analytes (≥0.8 and ≤1.8). In the screening step, the effects of different levels of CMPs on the CMAs were evaluated based on a full fractional design 22. The robustness tests were established from the knowledge space of the screening step and performed by application fractional factorial design 2(4−1). Method operable design region (MODR) was generated. The probability of meeting the specifications for the CMAs was calculated by Monte-Carlo simulations. In relation to literature such a complete AQbD approach including screening, optimization, and validation steps for the development of a new method for the quantitative determination of the full profile of nine impurities of an innovative pharmaceutical substance with the structure-based pre-development pointed out the novelty of our work. The final working conditions were as follows: column Zorbax Eclipse Plus C18, aqueous mobile phase 10 mM ± 1 mM aqueous solution of HCOOH, pH 2.6, 20% ± 1% of ACN at the start and 85% ± 1% of ACN at the end of the gradient, and column temperature 30 °C ± 2 °C. The method was validated in compliance with ICH guideline Q2(R1). The optimized method is specified, linear, precise, and robust. LOQ is on the reporting threshold level of 0.05% and LOD at 0.02% for all impurities.

Funder

Celon Pharma S.A. and the National Centre for Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference58 articles.

1. ICH, Q9, Quality Risk Management;Elder,2017

2. ICH, Q8(R2), Pharmaceutical Development;Holm,2017

3. The application of quality by design to analytical methods;Borman;Pharm. Technol.,2007

4. Implications and Opportunities of Applying QbD Principles to Analytical Measurements;Schweitzer;Pharm. Technol.,2010

5. Development of Quality-By-Design Analytical Methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3