Diosmetin Induces Modulation of Igf-1 and Il-6 Levels to Alter Rictor-Akt-PKCα Cascade in Inhibition of Prostate Cancer

Author:

Pakradooni Rebecca,Shukla Nishka,Gupta Kalpana,Kumar Jatinder,Isali Ilaha,Khalifa Ahmed O.,Shukla Sanjeev

Abstract

Growth signals, which typically originate from the surrounding microenvironment, are important for cells. However, when stimulation by growth factors becomes excessive and exceeds their threshold limit, deleterious effects may ensue. In patients with cancer, maintenance of tumors depends, at least in part, on growth factor stimulation, which can also facilitate cancer progression into advanced stages. This is particularly important when the tumor grows beyond its tissue boundaries or when it invades and colonizes other tissues. These aforementioned malignant events are known to be partly supported by elevated cytokine levels. Among the currently known growth signals, insulin-like growth factor (IGF)-1 and IL-6 have been previously studied for their roles in prostate cancer. Both IGF-1 and IL-6 have been reported to activate the RAPTOR independent companion of MTOR complex 2 (Rictor)/AKT/protein kinase C α (PKCα) signaling pathway as one of their downstream mechanisms. At present, research efforts are mainly focused on the exploration of agents that alter growth factor (such as IGF-1) and cytokine (such as IL-6) signaling for their potential application as therapeutic agents, as both of these have been reported to modulate disease outcome. In the present study, IGF-1 and IL-6 served distinct roles in the androgen responsive LNCaP cell line and in the androgen refractory PC-3 cell line in a dose- and time-dependent manner. Increased phosphorylation of Rictor at the Thr-1135 residue, AKT at the Ser-473 residue and PKCα at the Ser-657 residue were observed after treatment with IGF-1 and IL-6. Subsequently, it was found that diosmetin, a natural plant aglycone, had the potential to modulate the downstream signaling cascade of Rictor/AKT/PKCα to inhibit the progression of prostate cancer. Treatment of LNCaP and PC-3 cells with diosmetin inhibited the phosphorylation of Rictor (Thr-1135), AKT (Ser-473) and PKCα (Ser-657) in a dose-dependent manner. Furthermore, the Bax/Bcl-2 expression ratio was increased in response to diosmetin treatment, which would result in increased apoptosis. Based on these observations, diosmetin may represent a novel therapeutic target for prostate cancer.

Funder

National Cancer Institute

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3