Affiliation:
1. Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology (KICET), Icheon 17303, Republic of Korea
2. Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
Abstract
Recently, the durability of high-performance and multifunctional portable electronic devices such as smartphones and tablets, has become an important issue. Electronic device housing, which protects internal components from external stimuli, such as vibration, shock, and electrical hazards, is essential for resolving durability issues. Therefore, the materials used for electronic device housing must possess good mechanical and electrical insulating properties. Herein, we propose a novel high-strength polymer nanocomposite based on 3D-aligned aluminum borate nanowhisker (ABOw) structures. ABOw was synthesized using a facile hydrothermal method, and 3D-aligned ABOw structures were fabricated using a freeze-casting process. The 3D-aligned ABOw/epoxy composites consist of repetitively layered structures, and the microstructures of these composites are controlled by the filler content. The developed 3D-aligned ABOw/epoxy composite had a compressive strength 56.72% higher than that of pure epoxy, indicating that it can provide high durability when applied as a protective material for portable electronic devices.
Funder
National Research Foundation of Korea (NRF)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献