Numerical Simulation and Analysis of Hydraulic Turbines Based on BIM for Sustainable Development

Author:

Sun Shaonan1,Liu Xiaojie1ORCID,Zhang Ruijie1,Liu Chunlu2ORCID,Wang Ailing3

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Architecture and Built Environment, Deakin University, Geelong, VIC 3220, Australia

3. School of Management, Zhengzhou University, Zhengzhou 450001, China

Abstract

Hydropower is considered to be an important way to achieve the sustainable development goal of human progress. The performance of turbines is very important to the safety and stability of hydropower stations. Most of the hydraulic turbine performance studies only use Computational Fluid Dynamics (CFD) for performance simulation, lacking the integration of Building Information Modeling (BIM) technology and CFD. Therefore, a performance analysis model of a Francis turbine based on BIM was put forward in this paper. The BIM software OpenBuildings Designer CONNECT Edition Update 10 was used to build the hydraulic turbine model, and then the BIM model was transferred to the CFD numerical simulation platform ANSYS through the intermediate format conversion. In the ANSYS environment, the numerical simulation of different working conditions was carried out with the help of Fluent 2021 R1 software. The numerical simulation results show that the fluid velocity gradient in the volute was 2~3 m/s under the three working conditions, which was relatively stable. The water flow could progress the guide vane mechanism at a higher speed, and the drainage effect of the volute was better. There were some negative pressure areas at the back of the runner blades and the inlet of draft tube, and the negative pressure value was as high as −420,000 Pa and −436,842 Pa under maximum head conditions, which were prone to cavitation erosion. It is proven that BIM supported the hydraulic turbine performance analysis and provided a geometric information model for hydraulic turbine CFD numerical simulation, meaning that the performance analysis model based on BIM is feasible. This study can expand the application value of BIM and provide guidance for the study of hydraulic turbine numerical simulation using BIM technology in combination with CFD methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3