Underground Logistics Network Design for Large-Scale Municipal Solid Waste Collection: A Case Study of Nanjing, China

Author:

Liu Qing1,Chen Yicun2ORCID,Hu Wanjie1,Dong Jianjun3,Sun Bo4,Cheng Helan5

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

2. Institute of Defense Engineering, Academy of Military Sciences PLA, Beijing 100850, China

3. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

4. School of Defense Engineering, Army Engineering University of PLA, Nanjing 210007, China

5. The First Geological Brigade, Jiangsu Provincial Bureau of Geology and Mineral Resources, Nanjing 210041, China

Abstract

The challenges arising from the management of municipal solid waste (MSW) have a profound impact on the sustainable development of urban areas. As a sustainable solution, the transportation of MSW underground offers the potential to alleviate traffic congestion and reduce environmental pollution. In this study, we propose the implementation of a large-scale underground waste collection system (UWCS). To begin, a comprehensive operational process for the UWCS is designed based on an intelligent technology system, including facility operation, processing workflow, and technical parameters. Additionally, network planning methods for the UWCS are presented. A mixed-integer linear programming model is formulated with the objective of minimizing total cost. This model determines the optimal location and allocation of nodes within the network, as well as the pipeline layout and flow direction. Given the computational complexity, a hybrid optimization method, namely the genetic greedy algorithms and genetic variable neighborhood search algorithms (GGA-GVNS), is devised to obtain high-quality solutions for the model. Finally, to validate the efficacy of the proposed method, a simulation is conducted in the central city of Nanjing, China. The results demonstrate that the implementation of the UWCS network in Nanjing’s city center can yield an annual benefit of USD 5.99 million. Moreover, a sensitivity analysis reveals further MSW management-related insights and long-term planning strategies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3