A Transformer Model for Coastline Prediction in Weitou Bay, China

Author:

Yang Zhihai1ORCID,Wang Guangjun1ORCID,Feng Lei2,Wang Yuxian1,Wang Guowei1,Liang Sihai3ORCID

Affiliation:

1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China

2. Aero Geophysical and Remote Sensing Center for Natural Resources, China Geological Survey, Beijing 100083, China

3. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China

Abstract

The simulation and prediction of coastline changes are of great significance for the development and scientific management of coastal zones. Coastline changes are difficult to capture completely but appear significantly periodic over a long time series. In this paper, the transformer model is used to learn the changing trend of the coastline so as to deduce the position of the coastline in the coming year. First, we use the distance regularization level set evolution (DRLSE) model for instantaneous waterline extraction (IWE) from preprocessed Landsat time-series images from 2010–2020 in Weitou Bay, China. Then, tidal correction (TC) is performed on the extracted instantaneous waterline dataset to obtain coastlines projected to a single reference tidal datum. Finally, the coastline datasets from 2010–2019 are used for model training, and the coastline in 2020 is used for accuracy assessment. Three precision evaluation methods, including receiver operating characteristic curve matching, the mean offset, and the root mean square error, were used to verify the predicted coastline data. The receiver operating characteristic curve was specifically designed and improved to evaluate the accuracy of the obtained coastline. Compared with the support vector regression (SVR) and long–short-term memory (LSTM) methods, the results showed that the coastline predicted by the transformer model was the closest to the accurate extracted coastline. The accuracies of the correct values corresponding to SVR, LSTM, and transformer models were 88.27%, 94.08%, and 98.80%, respectively, which indicated the accuracy of the coastline extraction results. Additionally, the mean offset and root mean square error were 0.32 pixels and 0.57 pixels, respectively. In addition, the experimental results showed that tidal correction is important for coastline prediction. Moreover, through field investigations of coastlines, the predicted results obtained for natural coastlines were more accurate, while the predicted results were relatively poor for some artificial coastlines that were intensely influenced by human activities. This study shows that the transformer model can provide natural coastline changes for coastal management.

Funder

Guangjun Wang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3