Cost-Efficient Coverage of Wastewater Networks by IoT Monitoring Devices

Author:

Sikorski Arkadiusz,Solano Donado FernandoORCID,Kozdrowski StanisławORCID

Abstract

Wireless sensor networks are fundamental for technologies related to the Internet of Things. This technology has been constantly evolving in recent times. In this paper, we consider the problem of minimising the cost function of covering a sewer network. The cost function includes the acquisition and installation of electronic components such as sensors, batteries, and the devices on which these components are installed. The problem of sensor coverage in the sewer network or a part of it is presented in the form of a mixed-integer programming model. This method guarantees that we obtain an optimal solution to this problem. A model was proposed that can take into account either only partial or complete coverage of the considered sewer network. The CPLEX solver was used to solve this problem. The study was carried out for a practically relevant network under selected scenarios determined by artificial and realistic datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Characterisation of aqueous waste produced during the clandestine production of amphetamine following the Leuckart route utilising solid-phase extraction gas chromatography-mass spectrometry and capillary electrophoresis with contactless conductivity detection;Hauser;Drug Test. Anal.,2018

2. Alkaline Cleaning

3. Treatment of ion-exchange resins regeneration wastewater using reverse osmosis method for reuse

4. Micromole—Sewage Monitoring System for Tracking Synthetic Drug Laboratories http://www.micromole.eu

5. H2020 SYSTEM Consortium—Synergy of Integrated Sensors and Technologies for Urban Secured Environment. Fact Sheet Available at EC Website https://cordis.europa.eu/project/rcn/220304/factsheet/en

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3