Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model

Author:

Duan Xin-Yue1,Huang Di1,Lei Wen-Xian2,Chen Shi-Chao1,Huang Zhao-Qin3,Zhu Chuan-Yong1

Affiliation:

1. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

2. Changqing Engineering Design Company Limited, Xi’an 710000, China

3. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

This paper presents a numerical study on thermal energy mining from hot dry rock (HDR) using an enhanced geothermal system (EGS). In these simulations, the thermal–hydraulic–mechanical (THM) coupling model is employed on the basis of the embedded discrete fracture model. The evolution of physical fields of the fractured reservoir, including temperature field, pressure field, and stress field is studied over time, and the effects of different controllable factors, such as fracture morphology, fluid injection rate, and the distances between the injection well and producing well on the heat recovery capacity are investigated. The results show that the fracture morphology significantly influences heat extraction performance. The working fluid mainly flows along with the fracture networks, which causes locally low temperatures and low mean effective stress near fractures. The porosity and permeability increase due to the decrease in mean effective stress. For reservoir models with inclined fractures, there will be a significant decrease in the extraction temperature. In the 30th year, the decline in the heat recovery rate is 46.6%, which is much higher than the model without inclined fractures. Moreover, the increasing injection temperature barely influences the production temperature, while it significantly decreases the heat recovery of the EGS. When the injection and production well spacing is small, increasing the well spacing is an effective way to improve the thermal extraction performance of the EGS. In the model in the paper, the heat production increases up to 13.7% when the injection-production well spacing is increased from 150 m to 450 m. The results of this work could provide guidance for the optimization and operation of EGS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3