Abstract
Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual annotation task, the automatic detection and annotation of visual attention to AOIs can accelerate and objectify eye tracking research, in particular for mobile eye tracking with egocentric video feeds. In this work, we implement two methods to automatically detect visual attention to AOIs using pre-trained deep learning models for image classification and object detection. Furthermore, we develop an evaluation framework based on the VISUS dataset and well-known performance metrics from the field of activity recognition. We systematically evaluate our methods within this framework, discuss potentials and limitations, and propose ways to improve the performance of future automatic visual attention detection methods.
Funder
Bundesministerium für Bildung und Forschung
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献