Atomistic Simulation Studies of Na4SiO4

Author:

Shanika Mallikage Shalani1,Abiman Poobalasingam1,Iyngaran Poobalasuntharam1,Kuganathan Navaratnarajah2ORCID

Affiliation:

1. Department of Chemistry, University of Jaffna, Thirunelvely, Jaffna 40000, Sri Lanka

2. Department of Materials, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Tetrasodium silicate (Na4SiO4) has emerged as a promising candidate for battery applications due to its favorable ionic transport properties. Atomic-scale simulations employing classical pair potentials have elucidated the defect mechanisms and ion migration dynamics in Na4SiO4. The Na Frenkel defect, characterized by the creation of a Na vacancy and an interstitial Na⁺ ion, is identified as the most energetically favorable defect process, facilitating efficient vacancy-assisted Na⁺ ion migration. This process results in three-dimensional ion diffusion with a low activation energy of 0.55 eV, indicating rapid ion movement within the material. Among monovalent dopants (Li⁺, K⁺, and Rb⁺), K⁺ was found to be the most advantageous for substitution on the Na site. For trivalent doping, Al is the most favorable on the Si site, generating additional Na⁺ ions and potentially enhancing ionic conductivity. Ge was identified as a promising isovalent dopant for the Si site. These theoretical findings suggest that Na4SiO4 could offer high ionic conductivity and stability when optimized through appropriate doping. Experimental validation of these predictions could lead to the development of advanced battery materials with improved performance and durability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3