Influence of Ni Doping on Oxygen Vacancy-Induced Changes in Structural and Chemical Properties of CeO2 Nanorods

Author:

Zhu Yuanzheng1,Wang Weixia1,Chen Gejunxiang1,Li Huyi1,Zhang Yuedie1,Liu Chang1,Wang Hao1,Cheng Ping12,Chen Chunguang1ORCID,Seong Gimyeong3ORCID

Affiliation:

1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, China

3. Department of Environmental & Energy Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si 18323, Republic of Korea

Abstract

In recent years, cerium dioxide (CeO2) has attracted considerable attention owing to its remarkable performance in various applications, including photocatalysis, fuel cells, and catalysis. This study explores the effect of nickel (Ni) doping on the structural, thermal, and chemical properties of CeO2 nanorods, particularly focusing on oxygen vacancy-related phenomena. Utilizing X-ray powder diffraction (XRD), alterations in crystal structure and peak shifts were observed, indicating successful Ni doping and the formation of Ni2O3 at higher doping levels, likely due to non-equilibrium reactions. Thermal gravimetric analysis (TGA) revealed changes in oxygen release mechanisms, with increasing Ni doping resulting in the release of lattice oxygen at lower temperatures. Raman spectroscopy corroborated these findings by identifying characteristic peaks associated with oxygen vacancies, facilitating the assessment of Ni doping levels. Ni-doped CeO2 can catalyze the ultrasonic degradation of methylene blue, which has good application prospects for catalytic ultrasonic degradation of organic pollutants. Overall, this study underscores the substantial impact of Ni doping on CeO2 nanorods, shedding light on tailored catalytic applications through the modulation of oxygen vacancies while preserving the nanorod morphology.

Funder

‘College Student Innovation Training Program’ of the University of Shanghai for Science and Technology

The University of Suwon

Open Foundation of Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3