A Comparative Study of Microstructural Characteristics and Mechanical Properties of High-Strength Low-Alloy Steel Fabricated by Wire-Fed Laser Versus Wire Arc Additive Manufacturing

Author:

Zhang Dayue1ORCID,Fang Qian2ORCID,Li Binzhou1,Wang Yijia1,Si Shanshan1,Jiang Yuanbo1,Hu Zhiping3

Affiliation:

1. Ansteel Beijing Research Institute Co., Ltd., Beijing 102209, China

2. Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315103, China

3. Cold Rolled Strip Steel Mill of Angang Steel Co., Ltd., Anshan 114021, China

Abstract

This study evaluates the feasibility of producing high-strength low-alloy (HSLA) steel using advanced wire-fed laser additive manufacturing (LAM-W) and wire arc additive manufacturing (WAAM) technologies. Optimized parameters were independently developed for each heat source, utilizing a self-designed HSLA steel wire as the feedstock. Microstructural features and mechanical properties of the fabricated steels were characterized and compared, taking into account differences in heat input and cooling rates. LAM-W samples exhibited a finer columnar grain microstructure, while both LAM-W- and WAAM-produced steels predominantly showed lower bainite and granular bainite microstructures. LAM-W demonstrated higher strength and hardness, lower ductility, and comparable low-temperature toughness compared to WAAM. Both processes demonstrated an excellent balance between strength and ductility, with absorbed energy exceeding 100 J at −40 °C. The study confirms the feasibility of producing high-strength and tough HSLA steel parts using LAM-W and WAAM technologies, and compares the advantages and disadvantages of each method. These findings assist in selecting the most suitable wire-fed AM process for HSLA steel fabrication at high deposition rates.

Funder

National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3