Affiliation:
1. Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
Abstract
The sintering dynamics of nickel nanoparticles (Ni NPs) were investigated through a comprehensive approach that included in situ transmission electron microscopy annealing and molecular dynamics simulations. This study systematically examines the transformation behaviors of Ni NP agglomerates over a temperature spectrum from room temperature to 850 °C. Experimental observations, supported by molecular dynamics simulations, revealed the essential influence of rotational and translational motions of particles, especially at lower temperatures, on sintering outcomes. The effect of the orientation of particles on the sintering process was confirmed, with initial configurations markedly determining sintering efficiency and dynamics. Calculated activation energies from this investigation follow those reported in the literature, confirming surface diffusion as the predominant mechanism driving the sintering of Ni NPs.