Synthesis and Investigation of ReSe2 Thin Films Obtained from Magnetron Sputtered Re and ReOx

Author:

Kadiwala Kevon1ORCID,Dipane Luize1ORCID,Dipans Eriks1ORCID,Bundulis Arturs1ORCID,Zubkins Martins1ORCID,Ogurcovs Andrejs1ORCID,Gabrusenoks Jevgenijs1,Bocharov Dmitry1ORCID,Butanovs Edgars12ORCID,Polyakov Boris1ORCID

Affiliation:

1. Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia

2. Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia

Abstract

The promise of two-dimensional (2D) rhenium diselenide (ReSe2) in electronics and optoelectronics has sparked considerable interest in this material. However, achieving the growth of high-quality ReSe2 thin films on a wafer scale remains a significant challenge. In this study, we adopted a two-step method to produce ReSe2 thin films by combining magnetron sputtering of Re and ReOx onto flat substrates with subsequent selenization via atmospheric pressure chemical vapor transport (CVT). After analyzing the produced films using X-ray diffraction to identify the crystalline phase in formed thin film and scanning electron microscopy (SEM) to examine surface morphology, it was determined that the suitable temperature range for the 15 min selenization process with CVT is 650 °C–750 °C. Further investigation of these optimally produced ReSe2 thin films included atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The bulk electrical analysis of these films and AFM and SEM surface morphology revealed a strong reliance on the type of precursor material used for their synthesis, whereas optical measurements indicated a potential for the films in non-linear optics applications, irrespective of the precursor or temperature used. This study not only provides a new pathway for the growth of ReSe2 films but also sheds light on the synthesis approaches of other 2D transition metal dichalcogenide materials.

Funder

Latvian Council of Science project

European Union’s Horizon 2020

Institute of Solid State Physics, University of Latvia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3