Two New Energetic Hexagonal Anti-Perovskites (N2H5)3X[B12H12] · H2O (X− = [NO3]− and [ClO4]−): Crystal Structure, Vibrational Spectra, and Thermal Decomposition

Author:

Aghaei Hakkak Rouzbeh1,Klapötke Thomas M.2,Schleid Thomas1ORCID

Affiliation:

1. Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

2. Department of Chemistry, Ludwig-Maximilians University, Butenandtstrasse 5–13, D-81377 Munich, Germany

Abstract

Two novel energetic anti-perovskite compounds with the chemical formula (N2H5)3X[B12H12] · H2O, where X− is either [NO3]− or [ClO4]−, were successfully synthesized. Both dodecahydro-closo-dodecaborates crystallize orthorhombically in the space group Cmc21, exhibiting relatively similar lattice parameters ((N2H5)3[NO3][B12H12] · H2O: a = 915.94(5), b = 1817.45(9), c = 952.67(5) pm, (N2H5)3[ClO4][B12H12] · H2O: a = 1040.51(6), b = 1757.68(9), c = 942.34(5) pm both for Z = 4). Their synthesis involved a two-step process: first, Cs2[B12H12] passed through a cation exchange column to yield the acidic form of the dodecahydro-closo-dodecaborate, (H3O)2[B12H12]. This aqueous solution was subsequently neutralized with hydrazinium hydroxide and mixed with the corresponding water-dissolved hydrazinium salt (nitrate or perchlorate). Characterization of the obtained crystals was performed by single-crystal X-ray diffraction and Raman spectroscopy as well as thermal analyses (TG-DTA and DSC). The crystal structure determinations revealed that both compounds adopt a hexagonal anti-perovskite structure, distorted by the presence of water molecules. These compounds containing oxidizing oxoanions demonstrate a remarkable ability to release large amounts of energy (almost 2100 J/g) upon thermal decomposition.

Publisher

MDPI AG

Reference38 articles.

1. Klapötke, T.M. (2022). Chemistry of High-Energy Materials, Walter de Gruyter GmbH & Co KG.

2. Testing of Mining Explosives with Regard to the Content of Carbon Oxides and Nitrogen Oxides in Their Detonation Products;J. Sustain. Min.,2015

3. Explosive Demolition Planning of Building Structures Using Key Element Index;Isobe;J. Build. Eng.,2022

4. Effects of TKX-50 on the Performance of Solid Propellants and Explosives;Pang;Nano Micro-Scale Energ. Mater. Propellants Explos.,2023

5. Application of Explosives in the Oil Industry;Galante;Int. J. Oil Gas Coal Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3