The Use of LiDAR-Derived DEM in Flood Applications: A Review

Author:

Muhadi Nur Atirah,Abdullah Ahmad Fikri,Bejo Siti Khairunniza,Mahadi Muhammad Razif,Mijic AnaORCID

Abstract

Flood occurrence is increasing due to escalated urbanization and extreme climate change; hence, various studies on this issue and methods of flood monitoring and mapping are also increasing to reduce the severe impacts of flood disasters. The advancement of current technologies such as light detection and ranging (LiDAR) systems facilitated and improved flood applications. In a LiDAR system, a laser emits light that travels to the ground and reflects off objects like buildings and trees. The reflected light energy returns to the sensor, whereby the time interval is recorded. Since the conventional methods cannot produce high-resolution digital elevation model (DEM) data, which results in low accuracy of flood simulation results, LiDAR data are extensively used as an alternative. This review aims to study the potential and the applications of LiDAR-derived DEM in flood studies. It also provides insight into the operating principles of different LiDAR systems, system components, and advantages and disadvantages of each system. This paper discusses several topics relevant to flood studies from a LiDAR-derived DEM perspective. Furthermore, the challenges and future perspectives regarding DEM LiDAR data for flood mapping and assessment are also reviewed. This study demonstrates that LiDAR-derived data are useful in flood risk management, especially in the future assessment of flood-related problems.

Funder

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference99 articles.

1. Impacts of Disasters and Disaster Risk Management in Malaysia: The Case of Floods BT—Resilience and Recovery in Asian Disasters: Community Ties, Market Mechanisms, and Governance;Chan,2015

2. Department of Irrigation and Drainage (DID) Manual (Volume 1–Flood Management),2009

3. Disaster management cycle—A theoretical approach;Khan;J. Manag. Mark.,2008

4. Elevation Data for Floodplain Mapping,2007

5. Terrain Analysis: Principles and Applications;Wilson,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3