Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial

Author:

Rabia Mohamed1ORCID,Elsayed Asmaa M.2,Salem Ahmed M.1,Abdallah Alnuwaiser Maha3ORCID

Affiliation:

1. Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt

2. TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt

3. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

A uniform and highly porous reduced graphene oxide/poly-2-aminobenzene-1-thiol multi-layer (R-GO/P2ABT-ML) nanocomposite was synthesized and characterized. The uniform layer structure and porosity of the nanocomposite, combined with its conductivity, make it an ideal candidate for use as a pseudo supercapacitor. To enhance the capacitance behavior, a porous ball structure polypyrrole (PB-Ppy) was incorporated into the nanocomposite. When tested at 0.2 A/g, the capacitance values of the R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-Ppy were found to be 19.6 F/g and 92 F/g, respectively, indicating a significant increase in capacitance due to the addition of PB-Ppy. The energy density was also found to increase from 1.18 Wh.kg−1 for R-GO/P2ABT-ML to 5.43 Wh.kg−1 for R-GO/P2ABT-ML/PB-Ppy. The stability of the supercapacitor was found to be significantly enhanced by the addition of PB-Ppy. The retention coefficients at 100 and 500 charge cycles for R-GO/P2ABT-ML/PB-Ppy were 95.6% and 85.0%, respectively, compared to 89% and 71% for R-GO/P2ABT-ML without PB-Ppy. Given the low cost, mass production capability, and easy fabrication process of this pseudo capacitor, it holds great potential for commercial applications. Therefore, a prototype of this supercapacitor can be expected to be synthesized soon.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3