SWAT Model Performance Using Spatially Distributed Saturated Hydraulic Conductivity (Ksat) and Varying-Resolution DEMs

Author:

Jin Lilai1,Higgins Sarah J.2,Thompson James A.2ORCID,Strager Michael P.3,Collins Sean E.2,Hubbart Jason A.4ORCID

Affiliation:

1. Division of Forestry and Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

2. Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

3. Division of Resource Economics and Management, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

4. West Virginia Agricultural and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

Abstract

Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance components is necessary to advance model predictive certainties and land management practices. An exploratory modeling approach was developed in the physically based Soil and Water Assessment Tool (SWAT) framework to investigate the effects of spatially distributed observed Ksat on local water balance components using three digital elevation model (DEM) resolution scenarios (30 m, 10 m, and 1 m). All three DEM scenarios showed satisfactory model performance during calibration (R2 > 0.74, NSE > 0.72, and PBIAS ≤ ±13%) and validation (R2 > 0.71, NSE > 0.70, and PBIAS ≤ ±6%). Results showed that the 1 m DEM scenario provided more realistic streamflow results (0.315 m3/s) relative to the observed streamflow (0.292 m3/s). Uncertainty analysis indicated that observed Ksat forcings and DEM resolution significantly influence predictions of lateral flow, groundwater flow, and percolation flow. Specifically, the observed Ksat has a more significant impact on model predictive confidence than DEM resolution. Results emphasize the potential uncertainty of using observed Ksat for hydrological modeling and demonstrate the importance of finer-resolution spatial data (i.e., 1 m DEM) applied in smaller watersheds.

Funder

USDA National Institute of Food and Agriculture

West Virginia Agricultural and Forestry Experiment Station

USDA Natural Resources Conservation Service, Soil and Water Conservation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3