Microbialite Textures and Their Geochemical Characteristics of Middle Triassic Dolomites, Sichuan Basin, China

Author:

Wang Hao123,Yong Ziquan1,Song Jinmin1,Lin Tong1,Yu Yongqiang1

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

2. Department of Geology, University of Regina, Regina, SK S4S 0A2, Canada

3. Shudao Investment Group Limited Liability Company, Chengdu 610031, China

Abstract

Microbialite textures, such as microbial mats and biofilms, were observed in the Middle Triassic dolomite in the Sichuan Basin, western China, using core examination, thin section petrography, scanning electron microscopy (SEM), and geochemical analyses. The dolomite texture, consisting of fibrous and spherulitic structures, is similar in morphology and size distribution to those observed in microbial culture experiments. Extracellular polymeric substances (EPS) were identified based on the occurrence of fibers forming a reticular pattern and nanometer-sized spheroids. The rare earth element (REE) and stable isotope (C, O, and Sr) compositions of the Middle Triassic dolomite were measured to determine their geochemical characteristics. Using seawater as a standard, the dolomitic microbialites (MD) exhibited significantly positive La and Eu anomalies and higher REE concentrations and (Nd/Yb)sn values than associated limestones, and these patterns are inferred to be related to initial complexation on organic ligands in the biofilm, as proposed by previous researchers. The ambient temperature during dolomite precipitation was estimated to be within the 23 °C to 50 °C range, as indicated by the δ18O values of the dolomite. This study suggests that various microbial effects can significantly affect diagenetic processes in the Middle Triassic dolomite.

Funder

National Natural Science Foundation Key Program of China

the Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3