Energy Storage Charging Pile Management Based on Internet of Things Technology for Electric Vehicles

Author:

Li Zhaiyan1,Wu Xuliang1,Zhang Shen1,Min Long1,Feng Yan23,Hang Zhouming3ORCID,Shi Liqiu3

Affiliation:

1. Huzhou Xinlun Integrated Energy Service Co., Ltd., Huzhou 313000, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

3. School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Abstract

The traditional charging pile management system usually only focuses on the basic charging function, which has problems such as single system function, poor user experience, and inconvenient management. In this paper, the battery energy storage technology is applied to the traditional EV (electric vehicle) charging piles to build a new EV charging pile with integrated charging, discharging, and storage; Multisim software is used to build an EV charging model in order to simulate the charge control guidance module. On this basis, combined with the research of new technologies such as the Internet of Things, cloud computing, embedded systems, mobile Internet, and big data, new design and construction methods of the energy storage charging pile management system for EV are explored. Moreover, K-Means clustering analysis method is used to analyze the charging habit. The functions such as energy storage, user management, equipment management, transaction management, and big data analysis can be implemented in this system. The simulation results of this paper show that: (1) Enough output power can be provided to meet the design and use requirements of the energy-storage charging pile; (2) the control guidance circuit can meet the requirements of the charging pile; (3) during the switching process of charging pile connection state, the voltage state changes smoothly. It can provide a new method and technical path for the design of electric vehicle charging pile management system, which can effectively reduce the system’s operation and maintenance costs and provide more friendly and convenient charging services.

Funder

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems, China

Natural Science Foundation of Zhejiang Province, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3