Effects of Acid Modulators on the Microwave-Assisted Synthesis of Cr/Sn Metal-Organic Frameworks

Author:

Mao Wei1ORCID,Huang Renting1,Xu Hao1,Wang Hao1,Huang Yi1,Huang Shurong1,Zhou Jinghong1

Affiliation:

1. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China

Abstract

Metal-organic frameworks (MOFs) have attracted remarkable attention for their distinguished structural designability. Precisely controlling the particle size and improving the structural stability of MOF nanoparticles influence their catalytic activity significantly. In this study, six acids (nitric, hydrochloric, formic, acetic, succinic, and citric acids) were used as modulators to prepare bimetallic MIL-101 (Cr, Sn) (MIL stands for Materials of Institut Lavoisier) via a microwave-assisted hydrothermal method. Changes in volumetric, structural, stability, and catalytic properties, size, and shape of MIL-101 (Cr, Sn) were examined using scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and N2 adsorption–desorption measurements. All modulators altered the MOF properties. Compared with other samples, acetic acid as a modulator mildly altered the MOF morphology by narrowing their particle size distribution, enhancing the specific surface area, and significantly improving their water and thermal stabilities. The addition of acetic acid was suitable for the catalytic conversion of glucose to 5-hydroxymethylfurfural (5-HMF), achieving a 43.1% 5-HMF yield with 91.4% glucose conversion in a mixed solution of γ-valerolactone and saturated salt water at 150 °C after 30 min.

Funder

National Natural Science Foundation of China

Innovation-driven Development Project of Guangxi Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3