Synthesis of Green and Red-Emitting Polymethyl Methacrylate Composites Grafted from ZnAl2O4:Mn-Bonded GO via Surface-Initiated Atom Transfer Radical Polymerization

Author:

Gao MingORCID,Cheung Chi-FaiORCID,Wang Bo,Wang ChunjinORCID

Abstract

A novel dual green and red-emitting photoluminescent polymer composite ZnAl2O4:Mn-bonded GO/polymethyl methacrylate (PMMA) was synthesized in a single-step reaction by surface-initiated atom transfer radical polymerization (SI-ATRP). The polymer chain was surface-initiated from the ZnAl2O4:Mn/GO, and the final products have a homogenous photoluminescent property from ZnAl2O4:Mn and better mechanical properties strengthened by graphene oxide (GO). The morphologies of ZnAl2O4:Mn/GO and the polymer composites were verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction analysis (XRD) revealed the two valence states of Mn (Mn2+, Mn4+) existing in the ZnAl2O4 host lattice, while Fourier-transform infrared spectroscopy (FTIR) spectra proved the transference of the active group, C-Br, from the initiator to the monomer during the polymerization. Gel permeation chromatography (GPC) shows the narrow dispersity of polymer composites fabricated through SI-ATRP. The SEM and FTIR results show the successful ‘graft’ of the polymer chains from the surface of ZnAl2O4:Mn/GO. The dual green and red-emitting polymer composites were synthesized, confirmed by the photoluminescence (PL) and photoluminescence excitation (PLE) results.

Funder

Funding provided for the State Key Laboratories in Hong Kong from the Innovation and Technology Commission (ITC) of the Government of the Hong Kong Special Administrative Region

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference32 articles.

1. Planning Sustainable Cities: Global Report on Human Settlements 2009;Daniere;Int. Dev. Plan. Rev.,2011

2. Role of the plant factory with artificial lighting (PFAL) in urban areas;Kozai,2015

3. Advanced red phosphors for white light-emitting diodes

4. Advances in Phosphors for Light-emitting Diodes

5. Optical Properties of (Oxy)Nitride Materials: A Review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3